

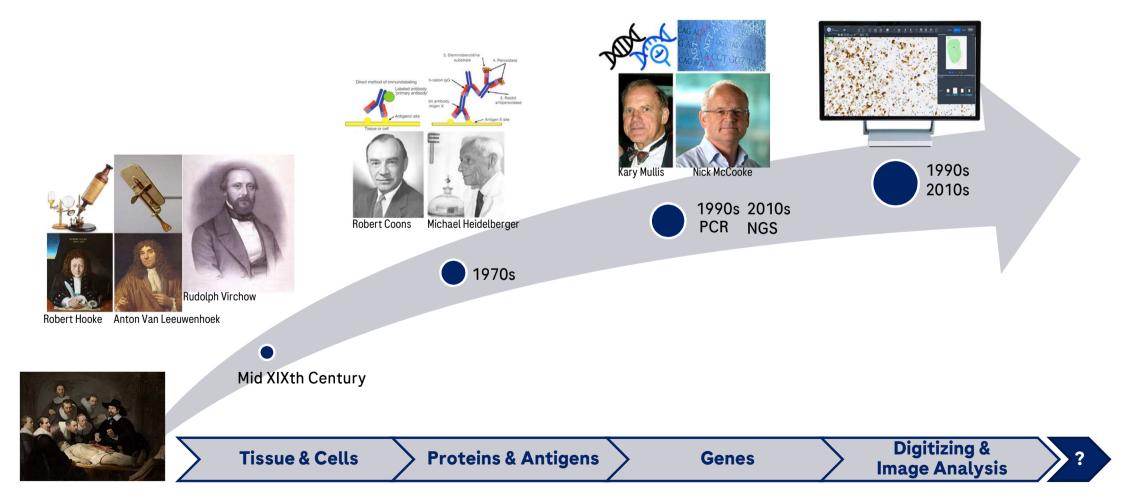
Roche

The Digital Revolution in the Pathology Laboratory

Promises and Challenges of Artificial Intelligence

Claire Faure, pathologist, head of Oncology Diagnostics in EMEA SRNW, Charlotte Erpicum, PhD, Product Manager – Tissue Diagnostics Roche Diagnostics

May 30, 2022



- 1. The present of AI in Pathology
- 2. The future of AI in precision medicine

Roche

Digitalisation of the Pathology Lab

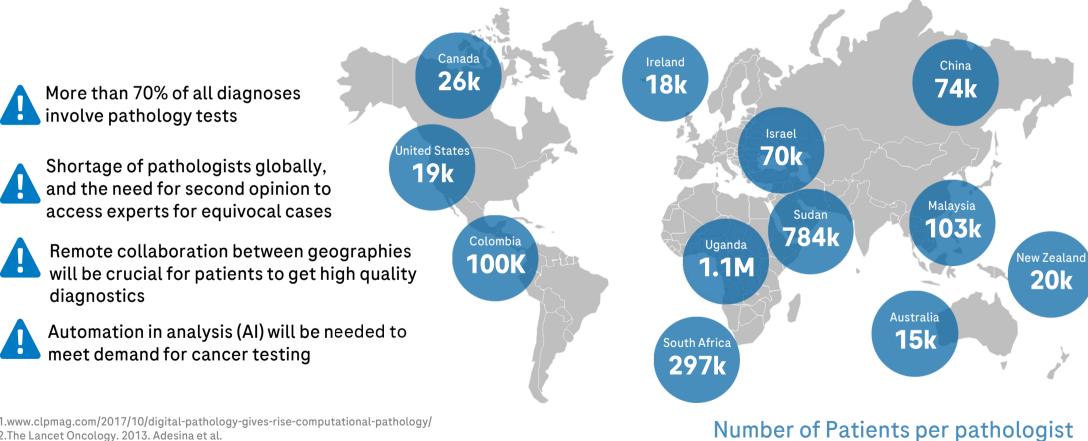
The fourth revolution in Anatomical Pathology: from the body to omics

Digital Pathology Slide and stain to Scan to analysis

Digital viewer Post analytical/interpretation Digitalisation Slide **H&E or IHC* Slide scanner Image Management Image Analysis Software** * 3 High-quality images Analyse confidently Pathologist interface Stain with accurate, fast, offers seamless workflow with validated and CEfor analysis **IVD** marked algorithms easy-to-use scanners

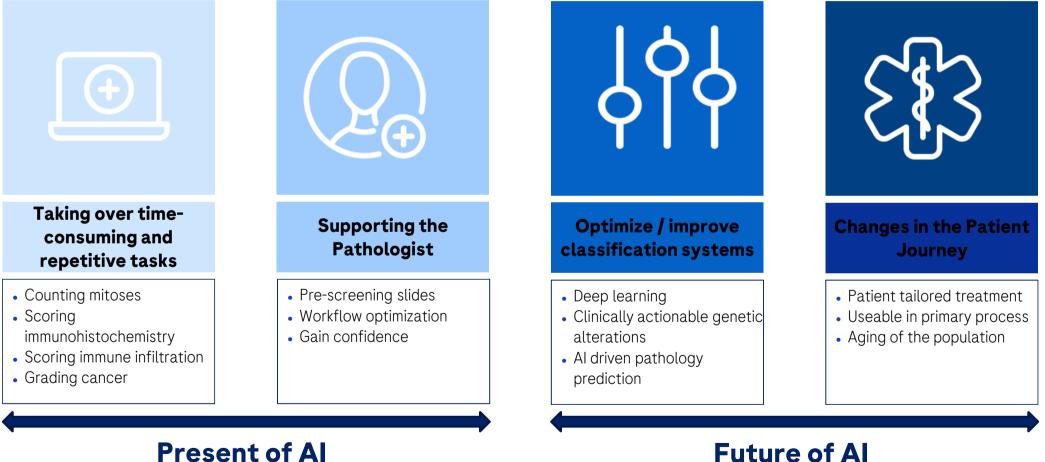
*IHC staining is shown for example.

 $\textcircled{\sc c}$ 2021 Roche Diagnostics. All rights reserved. Not for distribution.


The present of AI in Pathology

Digitalisation and AI can support the pathologists' increased workload

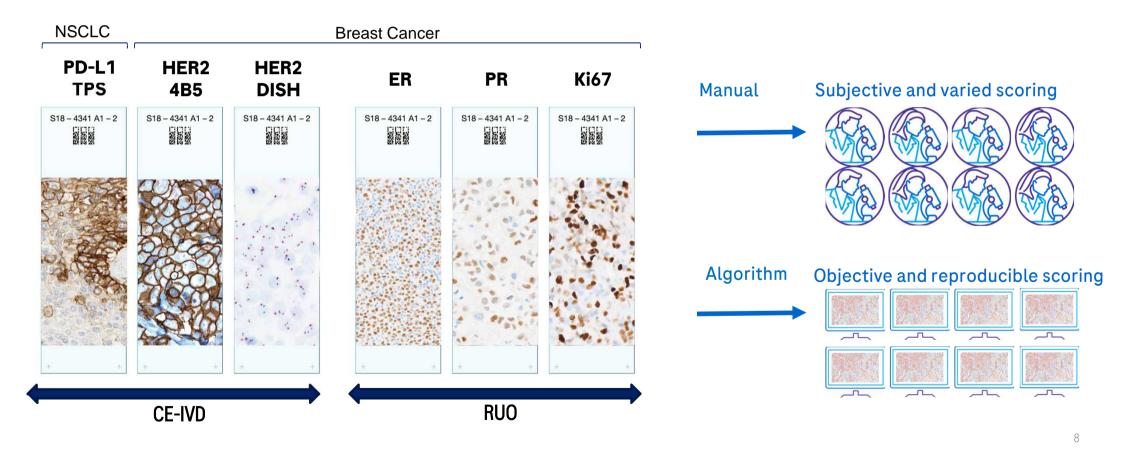
And address a critical shortage of pathologists globally



1.www.clpmaq.com/2017/10/digital-pathology-gives-rise-computational-pathology/ 2.The Lancet Oncology. 2013. Adesina et al. 3. www.minsalud.gov.co: Documento Técnico GPES/1682C-13

Values of Digital Pathology and AI

Digital pathology provides value: from workflow benefits up to precision medicine



Present of Al

Available algorithms supporting single biomarker evaluation

Algorithms supports pathologist's expertise and increase inter and intra observer reproducibility

The shift towards AI driven H&E algorithms as supporting tools

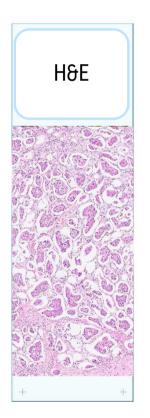
MDPI

Speeding up, improving accuracy and diagnosis confidence in daily routine

Automated Image analysis for « low level tasks » = object recognition

Aims at

- \rightarrow Saving pathologists' time
- $\rightarrow\,$ Improving consistency and accuracy

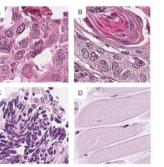

Examples

- Tumor detection
- Histotyping (NSCLC)
- Tumor grading
- Detection of metastases in lymph nodes

Validation cohorts High quality data sets

¹ Kriegsmann M et al Cancers 2020, 12, 1604 NSCLC = Non-Small Cell Lung Cancer




2

Article

Deep Learning for the Classification of Small-Cell and Non-Small-Cell Lung Cancer

Mark Kriegsmann ^{1,2,*}, Christian Haag ^{1,3}, Cleo-Aron Weis ⁴, Georg Steinbuss ^{1,3}, Arne Warth ⁵, Christiane Zgorzelski ¹, Thomas Muley ^{2,6}, Hauke Winter ^{2,6},

The shift towards AI driven H&E algorithms as supporting tools

Roche

Algorithm Output

I ow Risk

Extensive digitalisation of slides and resulting massive data lakes (will) open a new era

Advanced automated image analysis, based on pattern recognition

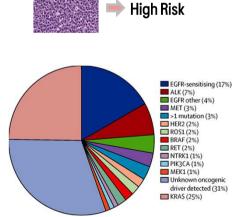
- To support and predict disease diagnosis and/or underlying molecular alterations
- To inform prognosis (OS) and/or treatment response on the basis of patterns in the image

medicine

ARTICLES

Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning

Nicolas Coudray^{©1,2,9}, Paolo Santiago Ocampo^{3,9}, Theodore Sakellaropoulos⁴, Navneet Narula³, Matija Snuderl³, David Fenyö^{5,6}, Andre L. Moreira^{3,7}, Narges Razavian^{©8*} and Aristotelis Tsirigos^{©1,3*}


Deep convolutional neural network enabled (CNN) on whole slide images (WSI) to accurately

- Classify tumours according to histotype (AUC* 0.97/pathologists
- Assist pathologists in the detection of cancer subtype/gene mutations (6/10 most common mutated genes in Lung Adenocarcinoma (including EGFR, KRAS, TP53, STK11)

• Aggressive lymphoma algorithm Identification of high risk DLBCL** patients for next generation Heme trials

• Lung Adenocarcinoma algorithm

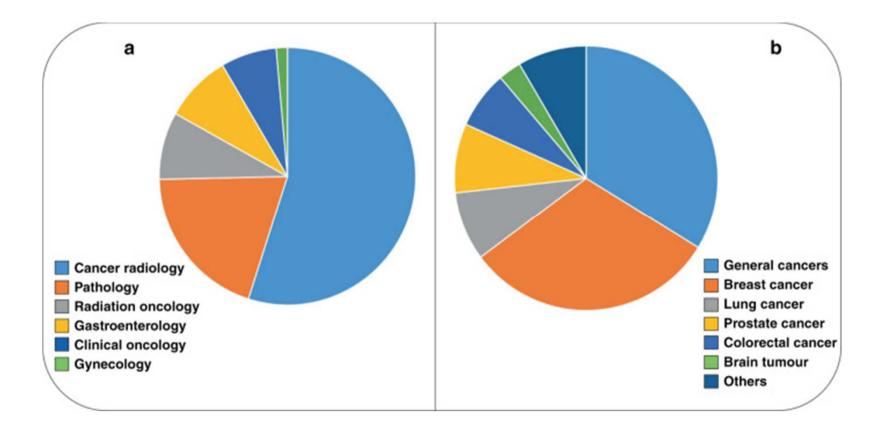
Mapping morphology to the molecular landscape of targetable actionable fusion positive NSCLC

Frequency of molecular aberrations in driver oncogenes in lung adenocarcinoma.

**DLBCL = Diffuse Large B Cell Lymphoma

1 Coudray, Ocampo et al 2018, Nature Medicine 2 Hirsch et al, Lancet 2017.

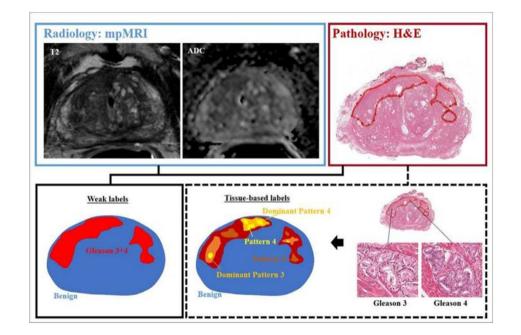
*AUC = Area Under the Curve is the measure of the ability of a classifier to distinguish between classe. The higher the AUC, the better the performance of the model at distinguishing between the positive and negative classes (max = 1). 10


Combining and integrating pathology, genomics and radiology with the help of AI, to better inform patient care

loci

FDA approved-AI in Oncology and Related Field

Cancer, Pathology and Radiology as booming fields



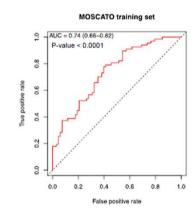
The AI power of combining Imaging and Pathology

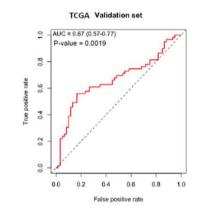
Radiomics informed by Pathology

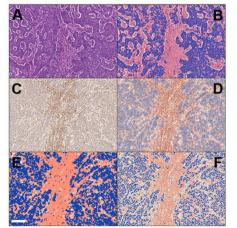
Better grade Prostate Cancer and develop AI¹

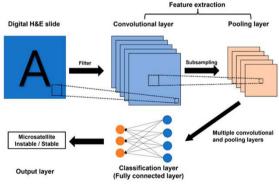
- Al methods show promise in aiding the **detection** and **assessment** of imaging-based tasks
- Al applied to mpMRI* and digital pathology in prostate cancer enables advanced characterization of disease through combined radiology-pathology assessment.
- Opportunities for improved spatial learning include density mapping of dominant pathologic grading and exclusion of non-cancerous structures within tumor field.

1 Harmon et al, 2019, Diagn Interv Radiol *mpMRI = multiparametric MRI

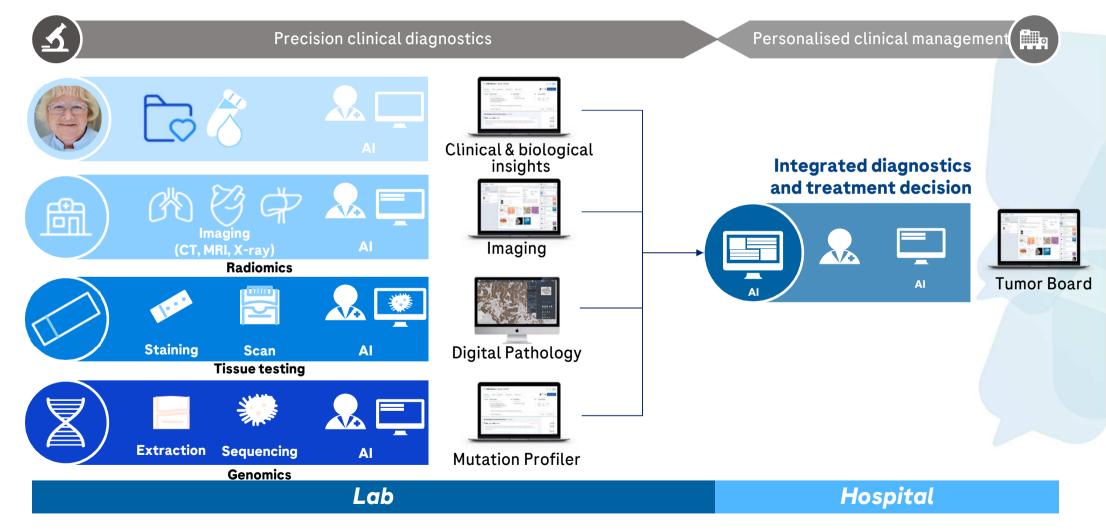



AI powered Integrated Diagnostics


Radiomics informed by Pathology, Genomics supporting Al driven Pathology


- Radiomic signature (CT-scan) for CD8+ infiltration, predicting immune phenotype and treatment response to ICPI*¹
- Validated on 3 independent cohorts of patients with adv solid tumors
- Radiomic signature for CD8 cells validated with the gene expression signature of CD8 (RNA Seq)
- Signature can discriminate inflamed vs immune desert tumours
- High baseline radiomic score associated with a higher proportion of patients with objective response with anti PD1 and anti PDL1 therapies
- Predicting Microsatellite instability based on histomorphology²
- CRC: AI-based systems show excellent performance (highest standard of 0.972)
- Gastric and endometrial carcinoma: lower but satisfactory performance (0.81 and 0.82 respectively)
- Confirmation test required for positive AI test

1 Sun et al, 2018, Lancet Oncology 2 Park et al 2022, Int J Mol Sci *ICPI = Immune CheckPoint Inhibitor



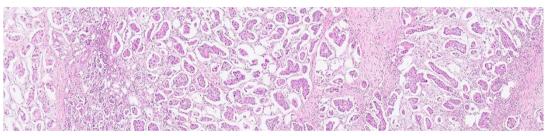
Digital transformation of oncology

Integrating clinical insight, imaging, pathology and molecular genomics

Roche

No company will be able to develop everything alone

Partnerships, consortia and open environment are key for success


Roche Digital Pathology Environment

- Accelerate image analysis algorithm development
- Allow for partnerships between researchers and developers, which can result in greater access to innovative imaging tools for laboratories and healthcare providers.

Public affairs initiatives: the example of the EU beating cancer plan

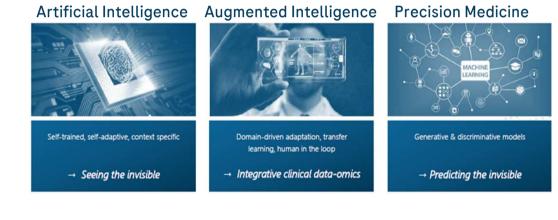
"...a political commitment to leave no stone unturned to take action against cancer"

- Tackle the entire disease pathway, structured around four key action areas: (1) prevention; (2) early detection;
 (3) diagnosis and treatment; and (4) quality of life of cancer patients and survivors
- Focus on research and innovation, tap into the potential that digitalisation and new technologies offer, and mobilise financial instruments

« Providing pathologists with access to innovative digital tools from Roche and our collaboratours through an open environment is critical for laboratory customers and the patients they serve. » Thomas Schinecker, CEO Roche Diagnostics

Flagship Research, Innovation and Digitalization

Europe's Beating Cancer Plan


Launch a European Cancer Imaging Initiative to support the development of new computer-aided tools to improve personalized medicine and innovative solutions – 2022.

Take aways

A bright future for digitalisation and AI in the pathology lab to improve patient care

- Digitalisation and AI is a booming field in medicine, including the Pathology Lab (the « fourth revolution »)
- All has the potential to increase speed and accuracy of diagnosis and now on improve prognostication to serve precision medicine.
- Integration with other insights (clinical, biological, radiomics and genomics) will play a major role.
- Some challenges to overcome:
 - → Integrate AI methods into pathology educational programs
 - \rightarrow Regulatory, key to ensure reliability of the AI tools, secure trust in use and in the public
 - → Technical and biological challenges (big data and data integration, tumor heterogeneity)
 - → Large multicentric studies required to unravel the full potential of AI in the complex and fast evolving field of Oncology
 - → Financial burden and barriers especially for low income countries

Take aways

A bright future for digitalisation and AI in the pathology lab to improve patient care and supporting Pathologist's unique expertise !

Could pathologists soon be replaced by robots?

"AI won't replace pathologists, but pathologists who use AI will replace pathologists who don't."

Harry Adams (Royal College of Pathology, 2020)

Doing now what patients need next