

Immunohistochemical stainers Overview Pros and Cons

Søren Nielsen, Director NordiQC

STAINER

This lecture is meant to be a basis for an open discussion... and not an attempt to promote any stainer / company ©

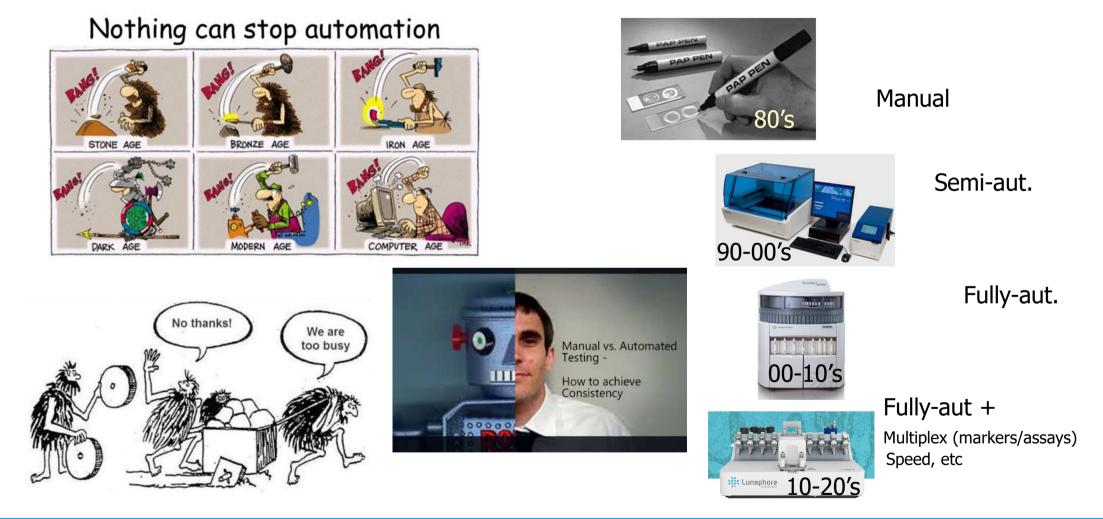


Photo by B.A. Rupert. Green Bay Press-Gazette

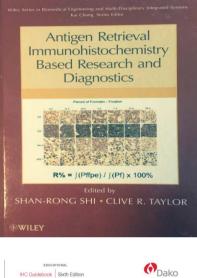
CHAPTER 9

THE PROS AND CONS OF AUTOMATION FOR **IMMUNOHISTOCHMISTRY** FROM THE PROSPECTIVE OF THE PATHOLOGY LABORATORY

DAVID G. HICKS and LORALEE MCMAHON

2010

Part II: The Potentials and Pitfalls


Chapter 9

Automation in IHC

Ole Feldballe Rasmussen, PhD, MSc

2013/2021

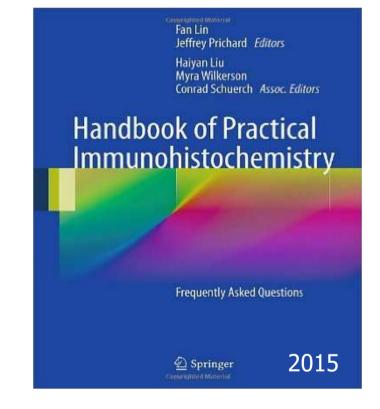
Immunohistochemical Staining Methods

1	Quality Management and Regulation	1
	Jeffrey Prichard	
2	Technique and Troubleshooting of Antibody Testing	17
	Fan Lin and Jianhui Shi	
3	Overview of Automated Immunohistochemistry	23
	Jeffrey Prichard, Angela Bitting, and Joe Myers	
4	Automated Staining: Dako Perspective	31
	Ole F. Rasmussen and Andreas Schønau	
5	Automated Staining: Ventana Perspective	37
	Angela Sattler	
6	Tissue Microarray	45

Myra Wilkerson and Erin Powell

Overview of Automated Immunohistochemistry

Jeffrey W. Prichard, DO


• Context.—The increasing demand for immunohistochemistry for clinical diagnostics, in combination with an ongoing shortage of staff in the histology laboratory, has brought about a need for automation in immunohistochemistry. The current automated staining platforms vary significantly in their design and capabilities.

Objective.—To review how technology has been applied to automating the process of immunohistochemical staining.

Data Sources.—Literature review, vendor interviews, and personal practice experience.

Conclusions.—Each of the commercially available, automated immunohistochemistry platforms has strategic design differences that produce advantages and disadvantages. Understanding those differences can help match the demands of testing volumes, turnaround time, standardization, and labor savings to the appropriate automated instrumentation.

(Arch Pathol Lab Med. 2014;138:1578–1582; doi: 10.5858/arpa.2014-0083-RA)

Updated 2022 – 3' version

Automated Immunohistochemistry Overview

Jeffrey W. Prichard, Angela K. Bitting Pages 41-46

Immunohistochemistry: An Agilent Perspective

Ole F. Rasmussen, Lars Rudbeck Pages 47-57

The Leica Biosystems Perspective: From Excision to Imaging-Every Step Is Critical

Douglas Coveney, Mandy Lindsay, Claire Kentler, Kellie Madigan Pages 59-67

Immunohistochemistry: Maixin Perspective

Xiaoya Wang, Qixin Lin, Yulin Xiong Pages 69-75

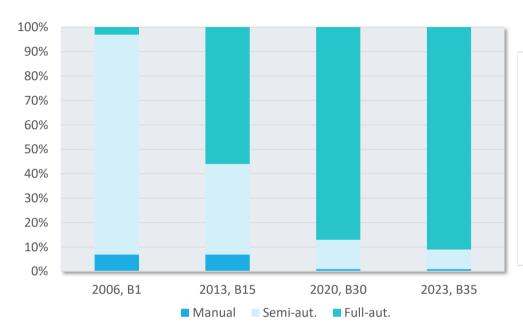
Immunohistochemistry: Roche Tissue Diagnostics Perspective

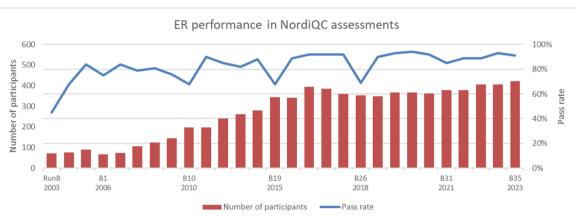
Hiroaki Nitta, Mark D. Robida, Nate Polaske Pages 77-85 Fan Lin - Jeffrey W. Prichard - Haiyan Liu -Myra L. Wilkerson *Editors*

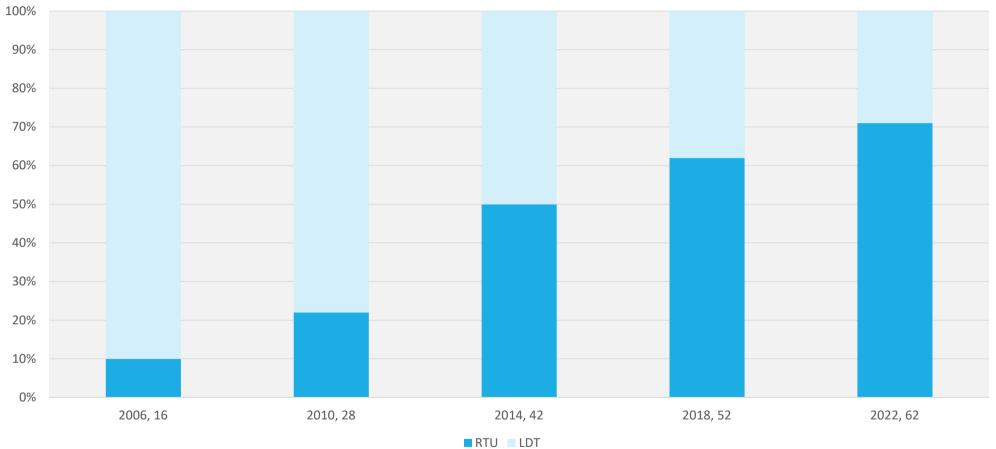
Handbook of Practical Immunohistochemistry Frequently Asked Questions Third Edition

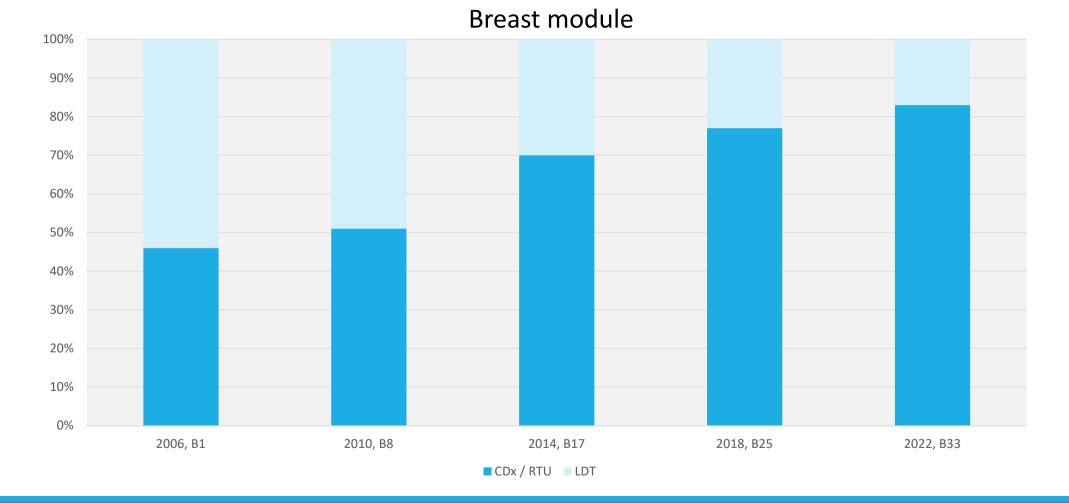
Abstract

The past decade has produced major innovations and a great variety of features available in automated staining instruments. This chapter is a "buyer's guide" for automated IHC instruments. For those new to the topic of automated staining, it begins with discussions of the advantages and disadvantages of automated versus manual staining techniques to help you decide if automation is the right choice for your laboratory. The basics of the general types of mechanics that differentiate the platforms are illustrated. Industry jargon about "open" and "closed" systems is better defined. To help with creating a thoughtful business plan to justify the budget expense of automation, the considerations that include the cost and potential savings of operating the equipment over and above the purchase price are presented. The different strategies for slide capacity and continuous processing that affect overall test throughput are described. A comprehensive feature comparison table is included to reveal how the current clinical instruments stack up side by side. With the information in this chapter, you will know how to evaluate whether an instrument is right for you and understand the value of technological advancements as they arrive in the future.


Updated 2022 – 3' version


IHC being changed from "home-brew" to "Ready-To-Use"





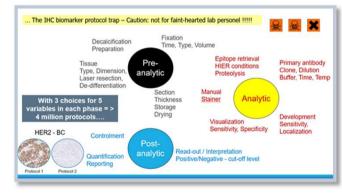
Proportion of protocols based on conc. and RTU formats in NordiQC

General module

Proportion of protocols based on conc. and RTU formats in NordiQC

10

Harmonization of "best practice" IHC methods


TABLE 3.	Harmonization of Protocols and Pass Rates for ER	
Among N	ordiQC Participants	

Run No.	8	B1	B15	B32
Year	2003	2006	2013	2021
Ready-To-Use antibody (%)	17	20	66	88
Alkaline buffer for HIER (%)	75	85	94	96
Multimer/polymer detection system (%)	61	71	93	99
Fully automated IHC platform (%)	4	24	59	89
Pass rate (%)	50	75	77	89

HIER indicates heat-induced epitope retrieval.

Nielsen, Søren, Bzorek, Michael, Vyberg, Mogens, Røge, Rasmus.

Lessons Learned, Challenges Taken, and Actions Made for "Precision" Immunohistochemistry. Analysis and Perspectives From the NordiQC Proficiency Testing Program. Applied Immunohistochemistry & Molecular Morphology 31(7):p 452-458, August 2023. | DOI: 10.1097/PAI.000000000001071

Automation of the IHC staining procedure:

1. To secure and improve consistency of the IHC assay compared to manual performance; intra- and inter-laboratory

2. Reduce the technician workload used for IHC

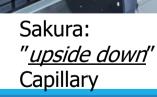
2023: Fully automated with focus on 4 core elements

- Deparaffination
- Epitope retrieval (HIER and/or proteolysis)
- IHC protocol (1 or 2 markers)
- Counterstaining

Capillary; BOND and Prime Leica, Omnis Dako, Genie Sakura

Flat labelling; BenchMark Ventana, Oncore Biocare, (AS48 Dako)

Capillary gap technology stainers:



Leica: <u>Covertiles</u> Capillary

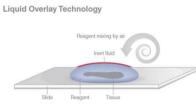
Dako: <u>*Glass Lid* Dynamic gap</u>

Technique;

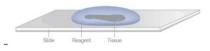
To spread reagents and to avoid slides drying out

Capillary Gap Staining	
-50 Tissue slide + (with or without tissue) <u>Cover</u>	um gap

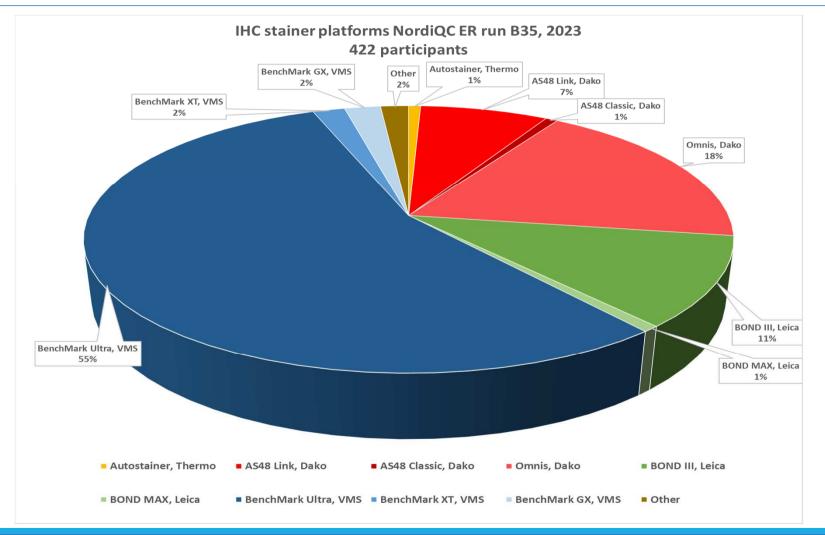
Flat labelling technology stainers:

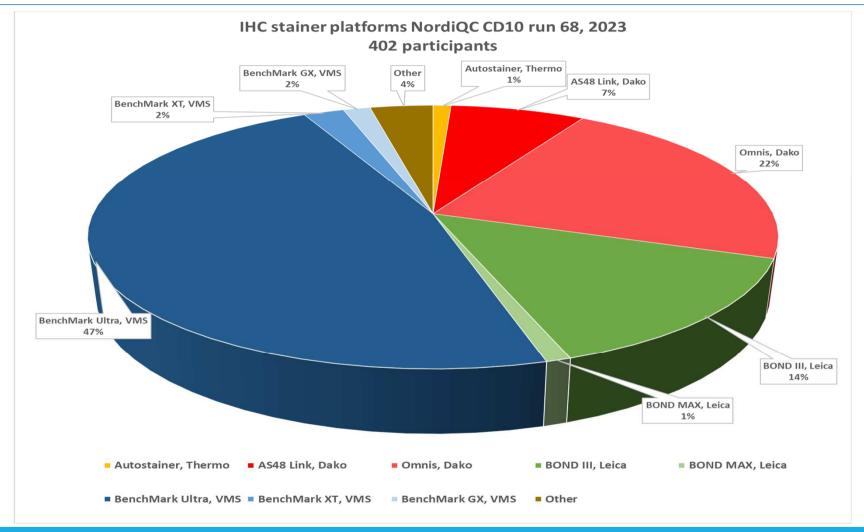


Ventana: +Mixing +Overlay


Technique;

Reagents are applied +/- mixing +/- overlay




Dako: -Mixing -Overlay Open Individual Slide Staining

Automation of the IHC staining procedure:

1. To secure and improve consistency of the IHC assay compared to manual performance; intra- and inter-laboratory

2. Reduce the technician workload used for IHC

Overview of Automated Immunohistochemistry

Jeffrey W. Prichard, DO

• Context.—The increasing demand for immunohistochemistry for clinical diagnostics, in combination with an ongoing shortage of staff in the histology laboratory, has brought about a need for automation in immunohistochemistry. The current automated staining platforms vary significantly in their design and capabilities.

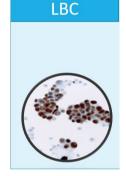
Objective.—To review how technology has been applied to automating the process of immunohistochemical staining.

Data Sources.—Literature review, vendor interviews, and personal practice experience.

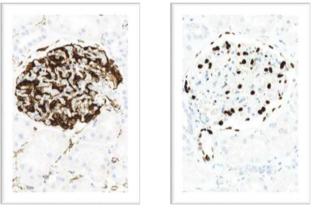
Conclusions.—Each of the commercially available, automated immunohistochemistry platforms has strategic design differences that produce advantages and disadvantages. Understanding those differences can help match the demands of testing volumes, turnaround time, standardization, and labor savings to the appropriate automated instrumentation. (*Arch Pathol Lab Med.* 2014;138:1578–1582; doi: 10.5858/arpa.2014-0083-RA)

"If you understand the needs of your laboratory and the capabilities of the various systems, you can find the best fit for your laboratory."

"If an automated IHC platform is chosen correctly to match the demands of testing, automation can provide necessary process improvement and cost savings needed in the modern practice of pathology."


"When evaluating automated staining systems, the first thing to understand is that there is no, one "best system" on the market, for all purposes."

Automation of the IHC staining procedure:


Functionality – Workload – Workflow - Flexibility – Costs

- Sample type FFPE / Cytology / Frozen sections
- Baking of slides
- Deparaffination
- Pre-treatment HIER and proteolysis
- Combined retrieval HIER+proteolysis / proteolysis+HIER
- Continuous loading
- Batch loading
- IHC / ISH ?
- Coverslipping
- Temperature controlled slides, reagents
- Waste handling amount, separation
- Requirement of special utensiles containers, slides, lids
-

TTF1

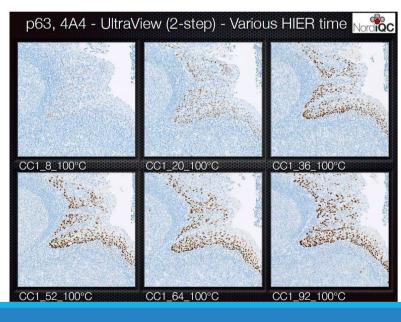
WT1 6F-H2 HIER

WT1 6F-H2 HIER + Prot.

Automation of the IHC staining procedure:

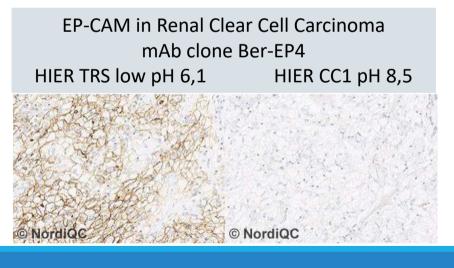
- Capacity pr run, .. day, .. week (no of units back-up..)
- Place, start and walk
 - Interactions required e.g. chromogen stability
- Sequential process
 - one instrument for all steps
- Parallel process
 - e.g. one instrument for HIER, one instrument for IHC
- Batch versus continuous load of slides
 - "Whole" working process in dept must be incorporated
- Technician ressources for maintenance
 - Frequency, extent, safety etc


To deliver on these commitments, the Agilent Workflow Team first prop	osed
a plan to analyze the current setup in the lab and created a simulation	ofa
future workflow. This analysis focused on the lab's instrument use patt including analysis of hands-on time and patient case delivery time for	
current and proposed system.	



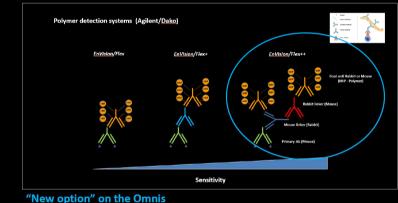
Automation of the IHC staining procedure:

- Software
 - Protocol set-up
 - HIER settings time, temperature
 - Retrieval methods single, combined
 - Adjustment of incubation times Ab, detection, etc
 - Adjustment of incubation temp Ab, proteolysis
 - Adjustment of protocol sequence $-H_2O_2$ etc
 - Adjustment of reagent volume
 - Modification of protocol steps addition/removal
 - Washing conditions of low affinity Abs



Automation of the IHC staining procedure:

- Reagents
 - HIER reagents
 - How many and which HIER buffers are offered ?
 - Can 3' party HIER buffers be applied ?
 - Proteolysis
 - Which proteolytic enzymes are offered
 - Can 3' party enzymes be applied
 - Primary antibody
 - 3' party antibodies ?
 - RTU antibodies available ?


Automation of the IHC staining procedure:

Functionality – Workload – Workflow - Flexibility – Costs

- Detection systems
 - Can 3' party detection system be applied ?
 - Reactivity mouse-rabbit and other species ?
 - Universal (MR), mono-specific ?
 - Modularity can sensitivity be adjusted ?
 - Amplification step, Linker, different systems etc
- Dual staining capabilities
 - Are different chromogens offered from vendor
 - Can 3' party chromogens be applied ?
 - Simultaneously ? (mono-specific system required)
 - Sequential ?

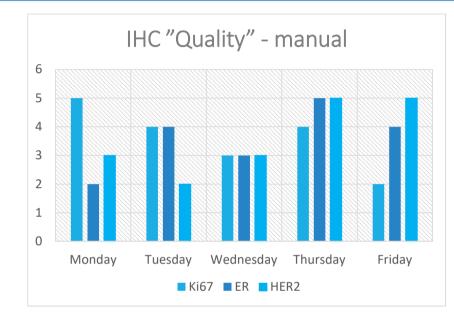
Technical aspects of immunohistochemistry & pitfalls - Analytical phase

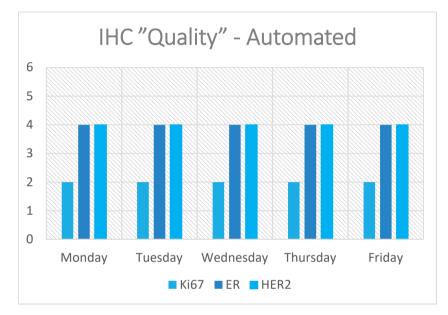
vew option" on the Omnis

In general, works well with rabbit primary Abs but less efficient with primary mouse primary Abs

Automation of the IHC staining procedure:

- Direct costs
 - Price pr instrument
 - Price pr slide
 - Preventive maintenance
- Indirect costs
 - Waste volumen
 - Daily maintenance (time used)
- "Hidden costs"
 - Down-period what is expected and accepted ?
 - Re-runs what is expected and accepted ?
 - Assesscories needed/required
 - Empty vials for reagents, reagents, amp/linker, etc




HC – Immunohistochemical stainers							
	Dako AS 48	Dako Omnis	VMS Ultra	Leica BOND III	Biocare ONCORE	Sakura Genie	Leica Prime
Capacity	48	60	30	30	36	30	24
Reagents	64	60	35	36	40	39	70
Volume	200 ul	200 ul	100 ul	150 ul	130 ul	350 ul	150 ul
Adjustable vol.	Yes	No	No	Yes	Yes	No	No
Depar.	No	Yes	Yes	Yes	Yes	Yes	Yes
HIER	No	Yes	Yes	Yes	Yes	Yes	Yes
HIER buf. 3' party	- Yes	5 Yes	2 No	2 No	2 No	2 No	2 No
Comb. ret.	Yes	Yes – H+P	Yes	Yes – H+P	?	Yes US/No EU	Yes
3' party reagents	Ab, enz, det, chr.	Ab, enz, det, chr.	Ab, enz	Ab, enz	Ab, enz	Ab	Ab
Protocol flexibility	High	Moderate	High	Moderate	High	Low	High
Any prot. / Any slide	Yes	No	Yes	No	Yes	Yes	Yes
Seq. DS	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Sim. DS	Yes	Yes	No	No	Yes	No	Yes
ISH	No	Yes	Yes	Yes	Yes	Yes	Yes
RTU's no*	116	84	260	155	64	150	155
CDx range	High	Moderate	High	Low	None	None	None

* Estimate 09.2023 with uncertainties and changes due to IVDR and local regulations

Automation facilities reproducibility

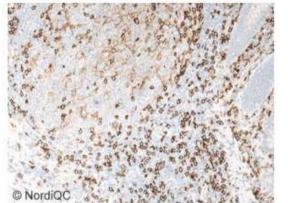
Compromisation of protocol is needed to handle automated processing

Certain markers are severely affected

Flexibility of automation might compensate for the impact

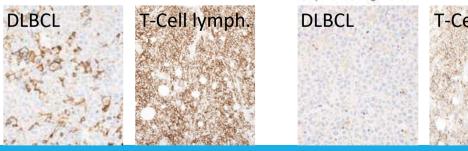
Target	Clone	AS 48 Link	Omnis	BenchMark	Bond
ALK	D5F3	V	(v)	v	v
ASMA	1A4	v	(v)	FN,FP	v
Bcl6	PG-B6p	V	-	FN	(v)
BSAP	24	v	FN	FN	v
BRAF	VE1	(v)	FN	v	FN
Calretinin	Dak-Calret1	v	FN	FN	v
CD4	4B5	V	FN	FN	(√)
CD56	123C5	v	FN	FN	v
CDX2	DAK-CDX2	V	V	FN	v
CEA	117	v	-	FN	v
CK-LMW	5D3	V	-	FN	v
Desmin	D33	v	FN	v	v
EPCAM	Ber-EP4	V	V	FN	FN
Hepatocyte	OCH1E5	V	-	V	FP
Melan A	A103	V	FN	FN	v
PAX8	MRQ-50, BC12	v	FN	FN	v
SATB2	EP281	V	(v)	v	(√)
SMAD4	B-8	V	FN	FN	V

IHC performance challenges related to automation and clone choice


NordiQC data

Target	Clone	AS 48 Link	Omnis	BenchMark	Bond
ALK	D5F3	v	(√)	v	v
ASMA	1A4	v	(√)	FN,FP	v
Bcl6	PG-B6p	v	-	FN	(v)
BSAP	24	v	FN	FN	v
BRAF	VE1	(v)	FN	v	FN
Calretinin	Dak-Calret1	v	FN	FN	v
CD4	4B5	v	FN	FN	(v)
CD56	123C5	v	FN	FN	v
CDX2	DAK-CDX2	v	v	FN	v
CEA	117	v	-	FN	v
CK-LMW	5D3	v	-	FN	v
Desmin	D33	v	FN	v	v
EPCAM	Ber-EP4	v	v	FN	FN
Hepatocyte	OCH1E5	v	-	v	FP
Melan A	A103	v	FN	FN	v
PAX8	MRQ-50, BC12	v	FN	FN	v
SATB2	EP281	v	(v)	v	(v)
SMAD4	B-8	v	FN	FN	v

Mitigation of RTU from one system to another can be challenging



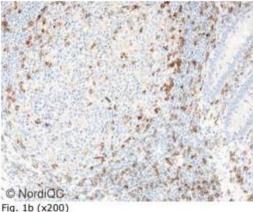


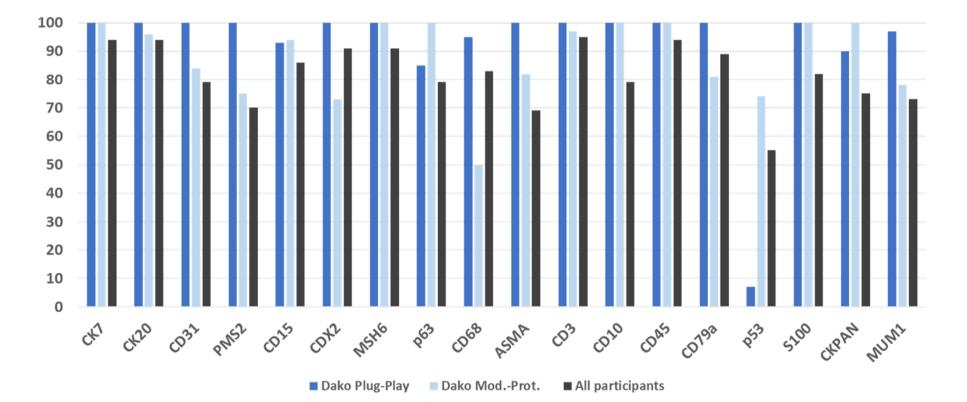
Fig. 1a (x200)

Optimal staining reaction for CD4 of the appendix applying the RTU assay IR649 (Autostainer, Dako/Agilent) based on the mAb clone 4B12, following vendor recommended protocol settings based on HIER in TRS (3-in-1) pH 9 and Envision FLEX+ as detection system.

All T-helper/inducer cells show a strong and distinct membranous staining reaction. The germinal centre macrophages display a weak to moderate staining intensity. No staining reaction was observed in B-cells and epithelial cells of the appendix. Same protocol used in Figs. 2a - 4a.

Insufficient staining reaction for CD4 of the appendix applying the same RTU system as in Fig. 1a, but used on the fully automated instrument Omnis (Dako/Agilent) with similar protocol settings as in Fig 1a - same protocol used in Figs. 2b - 4b.

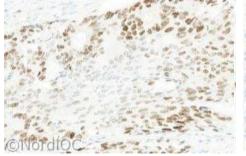
The staining intensity is significantly reduced in Thelper/inducer cells and germinal centre macrophages are false negative or only faintly demonstrated. This antibody clone provides too low analytical sensitivity on this particular platform (see description above) and should prompt laboratories to substitute to a robust primary Ab as e.g., the rmAb clones SP35 or EP204 compare with Fig. 2a-4b.

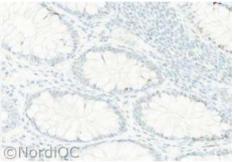

T-Cell lymph.

Pass rates for RTU's on "non-intended" platform;

	IR649 4B12 AS 48 Link	IR649 4B12 Omnis	Alternative clone* Omnis
CD4	93% (13/14)	0% (0/28)	100% (21/21)
	IR606 D33 AS 48 Link	IR606 D33 Omnis	Alternative clone** Omnis
Desmin	67% (18/27)	5% (2/37)	100% (7/7)
			* SP35, ** BS21

Dako/Agilent Omnis RTU Type I products NordiQC 2020-2021 pass-rates

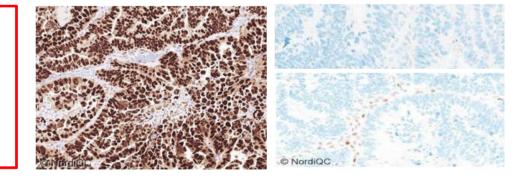



p53 run 38, 2013;

Purpose being demonstration of overexpression of p53 protein caused by TP53 mutation p53 run 38, 2013;

Dako/Agilent RTU; 88% pass rate as "plug-and-play"

Same level for other systems



p53 run 63, 2021;

Purpose being demonstration of overexpression **and loss** of p53 protein caused by TP53 mutations p53 run 63, 2021;

Dako/Agilent RTU; 3% pass rate as "plug-and-play"

Same level for other systems

IHC assays including RTU systems must always be developed and validated for its purpose(s)

Fully-automated systems: BenchMark Ultra, Ventana

Functionality – Workload – Workflow - Flexibility – Costs

5 main Pros:

- 1. Place, start, walk
- 2. Flexible protocol set-up "30 stainers"
- 3. Wide range of sensitivity for detection systems
- 4. Wide range of RTU primary antibodies Type I & II
- 5. IHC and ISH on same instrument / same slide

Fully-automated systems: BenchMark Ultra, Ventana

Functionality – Workload – Workflow - Flexibility – Costs

5 main Pros:

- 1. Place, start, walk
- 2. Flexible protocol set-up "30 stainers"
- 3. Wide range of sensitivity for detection systems
- 4. Wide range of RTU primary antibodies Type I & II
- 5. IHC and ISH on same instrument / same slide

3 main Cons:

- 1. Only CC1 applicable for HIER for IHC
- 2. Low affinity antibodies may show inferior performance
- 3. Maintenance time-consuming

Fully-automated systems: BOND III, Leica

Functionality – Workload – Workflow - Flexibility – Costs

5 main Pros:

- 1. Place, start, walk
- 2. Flexible protocol set-up e.g. combined retr.
- 3. Both low and high affinity primary antibodies work
- 4. Easy to use loading, programming, maintenance
- 5. Good portofolio of RTU antibodies plug-and-play

Fully-automated systems: BOND III, Leica

Functionality – Workload – Workflow - Flexibility – Costs

5 main Pros:

- 1. Place, start, walk
- 2. Flexible protocol set-up e.g. combined retr.
- 3. Both low and high affinity primary antibodies work
- 4. Easy to use loading, programming, maintenance
- 5. Good portofolio of RTU antibodies plug-and-play

3 main Cons:

- 1. Covertile technique precipitates and weak hue
- 2. Less flexible regarding continuous start 3×10 slides
- 3. Limited portofolio type II assays (CDx assays PD-L1 etc)

Fully-automated systems: Omnis, Dako

Functionality – Workload – Workflow - Flexibility – Costs

5 main Pros:

- 1. Flexible reagent choice HIER buffers
- 2. Easy to use loading, programming
- 3. High capacity and high daily throughput
- 4. IHC and ISH on same instrument
- 5. Temperature controlled reagents

Fully-automated systems: Omnis, Dako

Functionality – Workload – Workflow - Flexibility – Costs

5 main Pros:

- 1. Flexible reagent choice HIER buffers
- 2. Easy to use loading, programming
- 3. High capacity and high daily throughput
- 4. IHC and ISH on same instrument
- 5. Temperature controlled reagents

3 main Cons:

- 1. Limited portofolio of RTUs (I & II) & detection systems
- 2. Low affinity antibodies may show inferior performance
- 3. Less flexible protocol set-up

Semi-automated systems: AS-48, Dako

Functionality – Workload – Workflow - Flexibility – Costs

5 main Pros:

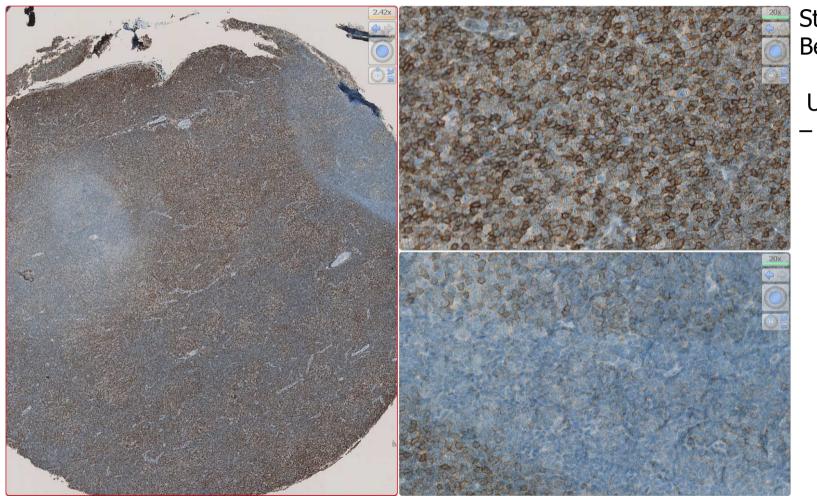
- 1. Flexible protocol set-up e.g. combined retr.
- 2. Flexible reagent choice HIER buffer, detection system
- 3. Both low and high affinity primary antibodies work
- 4. Easy to use loading, programming, maintenance
- 5. Good portofolio of RTU's type I & II plug-and-play

Semi-automated systems: AS-48, Dako

Functionality – Workload – Workflow - Flexibility – Costs

5 main Pros:

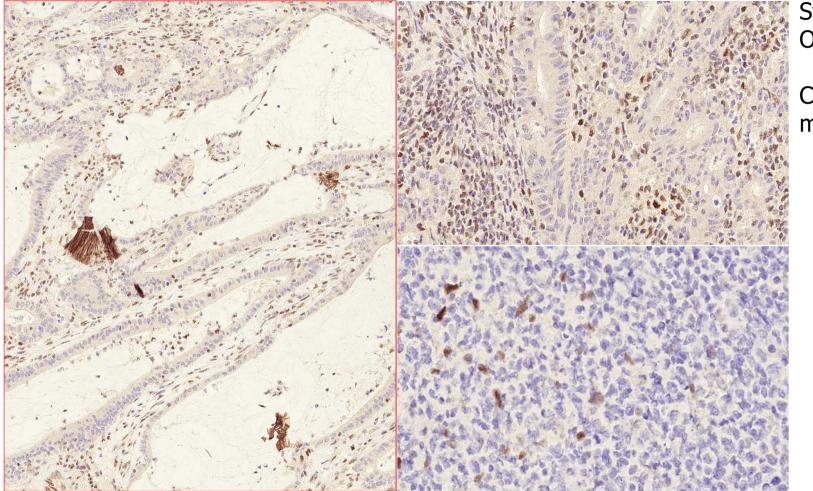
- 1. Flexible protocol set-up e.g. combined retr.
- 2. Flexible reagent choice HIER buffer, detection system
- 3. Both low and high affinity primary antibodies work
- 4. Easy to use loading, programming, maintenance
- 5. Good portofolio of RTU's type I & II plug-and-play


3 main Cons:

- 1. Increased manual interaction 2 instruments needed
- 2. Primarily batch operation
- 3. High reagent volumen needed 300 ul and >"dead-vol"

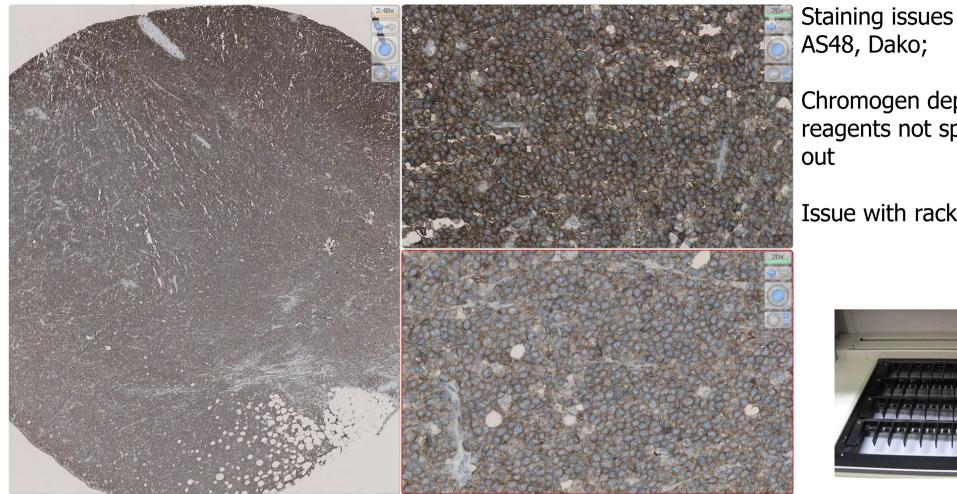
Staining issues BenchMark, VMS;

Uneven weak and neg areas – air bubbles



Staining issues Bond, Leica;

Chromogen precipitates and general hue

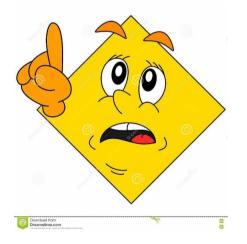


Staining issues Omnis, Dako;

Chromogen precipitates, morphology and general hue

Chromogen depletion, reagents not spread, drying

Issue with rack levelling



REVIEW ARTICLE

(Appl Immunohistochem Mol Morphol 2015;23:1-18)

Standardization of Positive Controls in Diagnostic Immunohistochemistry: Recommendations From the International Ad Hoc Expert Committee

Emina E. Torlakovic, MD. PhD.*; Soren Nielsen, HT. CT.28 Glenn Francis, MBBS, FRCPA, MBA, FFSc (RCPA), ## John Garratt, RT, *** Blake Gilks, MD, FRCPC, * ** Jeffrey D. Goldsmith, MD, 12 Jason L. Hornick, MD, PhD,* \$\$ Elizabeth Hylek, MD, PhD,* Merdol Ibrahim, PhD, W Keith Miller, FIBMS, W Eugen Petcu, MD, PhD, W Paul E. Swanson, MD, ¶## Xiaoge Zhou, MD, *** ††† Clive R. Taylor, MD, PhD, ±±± and Mogens Vyberg, MD18

TABLE 3. (continued) **Special Considerations** Cut and submit "own on-slide The positive controls should match control" if sending patients' patients' sample tissue processing unstained slides to another so far as is possible laboratory for IHC testing This is difficult if the sender does not know which IHC assays will be performed or if the sender does not have dIHC laboratory and has no positive controls Use on-slide positive controls "Run" or "batch" positive controls are not recommended Date unstained slides with on-slide Without the date when the slides are prepared, it will be impossible controls to determine if a unexpected weak result is due to variation in protocol or to an "expired" positive control

dIHC indicates diagnostic immunohistochemistry; iCAPCs, immunohistochemistry critical assay performance controls; SOP, standard operating procedure.

> "even for automated stainers, where it cannot be guaranteed that every slide in fact receives identical treatment".

RESEARCH ARTICLE

(Appl Immunohistochem Mol Morphol 2017;25:308-312) An Audit of Failed Immunohistochemical Slides in a Clinical Laboratory: The Role of On-Slide Controls

Carol C. Cheung, MD, PhD, JD,*† Clive R. Taylor, MD, DPhil,‡ and Emina E. Torlakovic, MD, PhD†

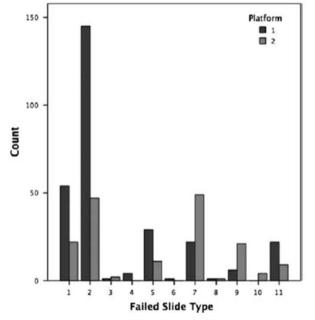
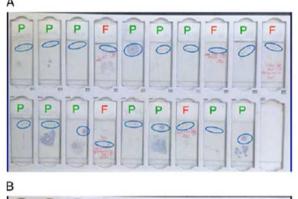


FIGURE 1. Frequency of failed immunohistochemistry slides by category and platform.

2% error rate (452/22.234 slides) Class I 0,8% - Class II 9,0%

TABLE 1. Categories of Failed IHC Slides Failed

IHC Slide		
Category	Description	Comments
1	On-slide control too weak, patient tissue negative	Correct primary Ab was applied, but test sensitivity is possibly too low
2	On-slide control negative, patient tissue negative	Total slide failure; the result of the test does not suggest possible cause of the failure
3	On-slide control too weak, patient tissue weakly positive but no internal control	May indicate decreased technical sensitivity
4	On-slide control negative, patient tissue weakly positive but no internal control	There is uncertainty whether the correct primary Ab was applied or if there was significantly decreased sensitivity
5	No on-slide control, patient tissue negative	Uncertain results; cannot distinguish if the staining was optimal, suboptimal, or total failure
6	No on-slide control, patient tissue positive	No internal control present; lesion positive; failed only if there is uncertainty over whether the proper primary Ab was applied
7	Failed signal-to-noise ratio	Usually too high background; potential false positive, involving both patient sample and on-slide external control
8	Counter staining problem	If severe, may render result uninterpretable
9	Wrong protocol	Wrong protocol selected when > 1 protocol for the given primary Ab exists in the system
10	Uneven staining	Large or critical areas of the patient tissue or controls were missed by uneven staining
11	Wrong control	Either wrong tissue control or areas relevant to the test were missing (detached during staining or paraffin block with control tissue cut through)


Category 5,6,9,11

Lab related (22%)

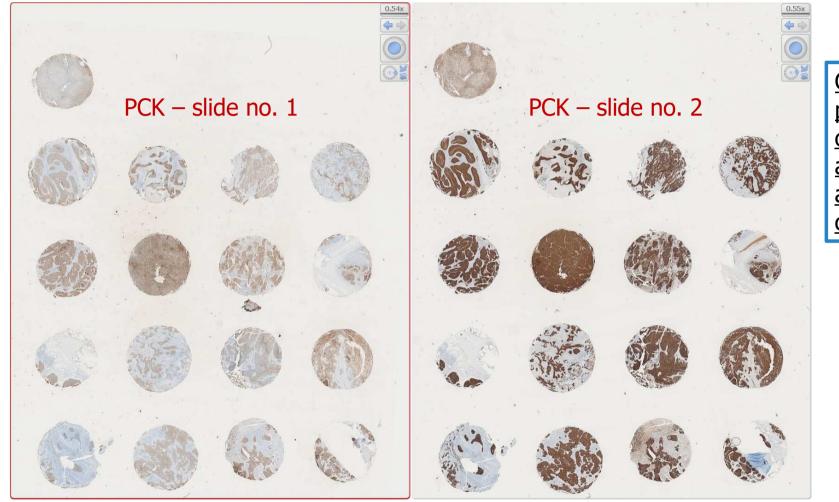
Category 1,2,3,4,7,8,10

Assay and/or Instrument (78%)

On-slide controls

IHC slides stained for ALK (Class II), same run, same instrument, same protocol 14/19 passed 5/19 failed

Batch-control - Theoretically: Batch control fail by same conditions as above 0/19 passed 19/19 failed (no consistent internal control...)

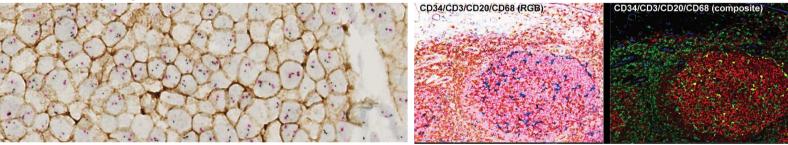


Batch-control - Theoretically:

Batch control pass by same conditions as above 19/19 passed 0/19 failed (the 5 failed slides not identified....)

Consider each slide position / chamber on the IHC stainer as an individual stainer and use appropriate on-slide controls

Automation in IHC reduces hands-on and improves consistency However, the quality of the end result is less influenced by the function of the automated stainer compared to the impact of:


- Quality of the tissue material (pre-analytics)
 - Automation will not compensate for delayed fixation etc
- Quality of the reagents used (sensitivity, specificity analytics)
 - Use of detection system with low sensitivity etc
- Accuracy of the technical optimization and validation of the test
 - Use of RTU formats not adequately calibrated etc
- Interpretation of the test
 - Inadequate choice of control material etc

Fully-automated systems: Future ...???

Functionality – Workload – Workflow - Flexibility – Costs

To come:

- 1. Multi-plexing
 - 1. IHC/ISH information on both protein and gene level
 - 2. IHC trible/quadrable staining less sample material
- 2. Reduced IHC staining time shorter TAT required
- 3. Ability to perform ISH for miRNA and similar gene targets
- 4. Increased demand for traceability of IHC process (ISO)
- 5. Multi-functionality IHC, coverslipping, scanning in one device
- 6. New "players" on the market

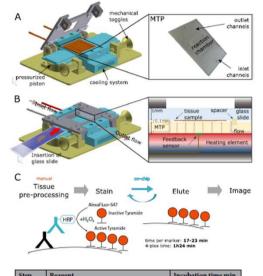
Fully-automated systems: Future ...???

Flexible automated system for researchers

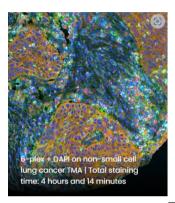
LabSat™ Research is an ultra-rapid automated staining instrument based on an innovative microfluidic technology that is capable of carrying out IHC/IF staining cycles within a few minutes, in a highly precise and reproducible manner. This technology breakthrough together with a fully open system, bring a flexible solution at the reach of medium and small laboratories.

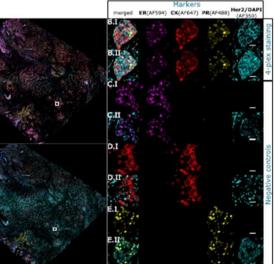
m/scientificrepor

For Research Use Only. Not for use in diagnostic procedures


Received: 18 October 2017

Accepted: 28 February 2019 Published online: 14 March 2019

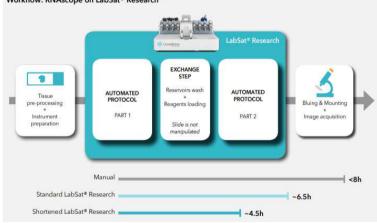


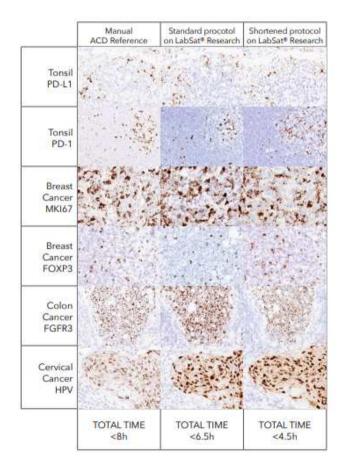

OPEN Ultra-fast and automated immunohistofluorescent multistaining using a microfluidic tissue processor

Giulia Cappi, Diego Gabriel Dupouy, Marta Aurelia Comino & Ata Tuna Ciftlik

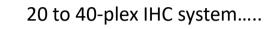
Step	Reagent	Incubation time min
1	anti-ER AbI	4
2	HRP-AbII	4
3	TSA-AF	2
4	Elution	6
5	anti-CK AbI	2
6	HRP-AbII	2
7	TSA-AF	2
8	Elution	4
9	anti-PR AbI	4
10	HRP-AbII	4
11	TSA-AF	2
12	Elution	6
13	anti-Her2 AbI	2
14	HRP-AbII	2
15	TSA-AF	2
	Total staining time	48 min
	Total staining time with washing steps	1h24 min

Fully-automated systems: Future ...???


IHC


mRNA

IncRNA


miRNA

• • •

Fully-automated systems: Future ...???

Hyperplex workflow without user intervention hyperplexing 6 Standard pathology tissue Fully automated cycles of seqIF Image viewing Perform image analysis Image preparation preprocessing & evaluation on any platform HORIZON™ from 0 Deparaffinization Lunaphore Third party image Antigen retrieval Insert up to 4 samples on standard glass slides Image export OME-TI analysis tools STAIN Custom pipelines =/ Load your preferred reagents on the instrument Off-the-shelf, non-conjugated Re-use sample **Re-use your sample** for downstream primary antibodies ELUTE applications ✓ SPYRE[™] Antibody Panels from IMAGE Hyperplex channel Lunaphore 1 management ✓ H&E Lunaphore recommended FOV stitching 1-click background Transcriptomics antibodies Click "start" and walk away Image stacking subtraction - IHC Your own regular antibodies

Contact Us

0

Resources & Support - News & Blog - Events Company -

See a 40-plex TMA for yourself! \rightarrow

Scalable

COMETTM

Lunaphore

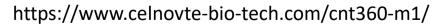
Fully-automated systems: Future ...???

Applications IHC & multiplex IHC Gene & protein IHC/ISH mRNA ISH miRNA ISH DNA ISH

Fully-automated systems: Future ...?? – New players

Tissue-Tek Genie

Tissue-Tek Genie® Advanced Staining System


Full automation, true random access for IHC and ISH

Fully-automated systems: Future ...??? – New players

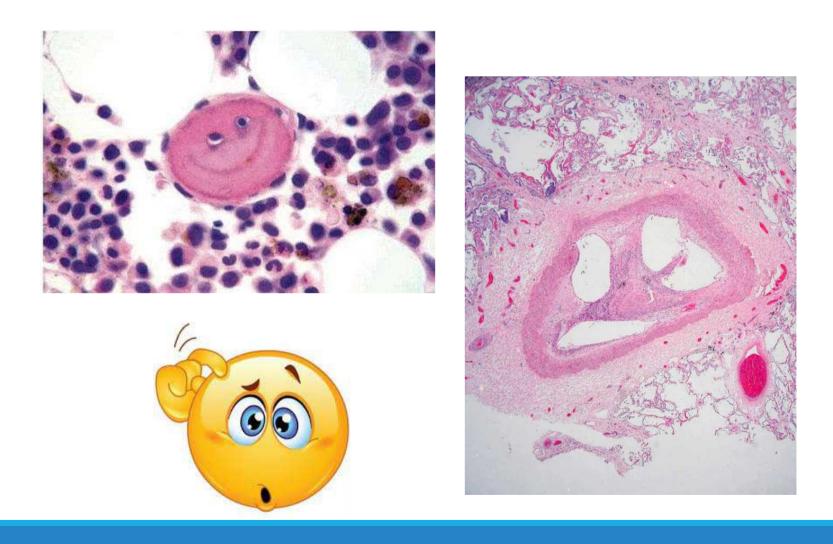
Fully-automated systems: Future ...??? - New updates and versions

The BOND-PRIME IHC & ISH Stainer Unveiled

Designed and manufactured in Australia, watch the global unveiling of the BOND-PRIME IHC and ISH stainer as it was revealed to a live Australian audience at the 7th International DIHC Conference.

WATCH THE UNVEILING HERE

Conclusions:


Automation in IHC is needed primarily to secure consistency of inter- and intralaboratory results and to reduce hands-on.

There is no perfect system \otimes all have pros and cons. Each laboratory has to select the system being most applicable and favourable for the needs and demands within the laboratory.

Use other laboratories to have a more objective view on the systems offered.

A combination of different systems might be the best solution, as the IHC tests can be performed on the system giving the best technical result and lowest price – drawback workflow....

